April 1988 Revised September 2000

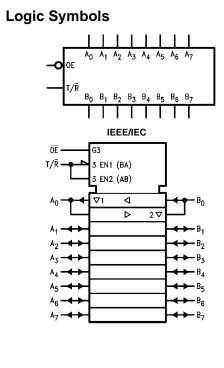
74F245 Octal Bidirectional Transceiver with 3-STATE Outputs

General Description

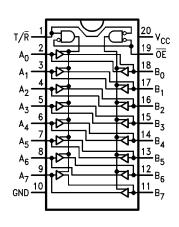
FAIRCHILD

SEMICONDUCTOR

The 74F245 contains eight non-inverting bidirectional buffers with 3-STATE outputs and is intended for bus-oriented applications. Current sinking capability is 24 mA at the A Ports and 64 mA at the B Ports. The Transmit/Receive (T/R) input determines the direction of data flow through the bidirectional transceiver. Transmit (active HIGH) enables data from A Ports to B Ports; Receive (active LOW) enables data from B Ports to A Ports. The Output Enable input, when HIGH, disables both A and B Ports by placing them in a High Z condition.


Features

- Non-inverting buffers
- Bidirectional data path
- A outputs sink 24 mA
- B outputs sink 64 mA


Ordering Code:

Order Number	Package Number	Package Description
74F245SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74F245SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F245MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74F245MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74F245PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

© 2000 Fairchild Semiconductor Corporation DS009503

www.fairchildsemi.com

Unit Loading/Fan Out

Dia Managa	Description	U.L.	Input I _{IH} /I _{IL}		
Pin Names	Description	HIGH/LOW	Output I _{OH} /I _{OL}		
OE	Output Enable Input (Active LOW)	1.0/2.0	20 μA/–1.2 mA		
T/R	Transmit/Receive Input	1.0/2.0	20 μA/–1.2 mA		
A ₀ -A ₇	Side A Inputs or	3.5/1.083	70 μA/–0.65 mA		
	3-STATE Outputs	150/40(38.3)	–3 mA/24 mA (20 mA)		
В ₀ –В ₇	Side B Inputs or	3.5/1.083	70 μA/–0.65 mA		
	3-STATE Outputs	600/106.6(80)	–12 mA/64 mA (48 mA		

Truth Table

Inpu	its	Output		
OE	T/R	Output		
L	L	Bus B Data to Bus A		
L	н	Bus A Data to Bus B		
н	х	High Z State		

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial

Absolute Maximum Ratings(Note 1)

Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	$-55^{\circ}C$ to $+125^{\circ}C$
Junction Temperature under Bias	-55°C to +150°C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	-0.5V to V _{CC}
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I _{OL} (mA)
ESD Last Passing Voltage (Min)	4000V

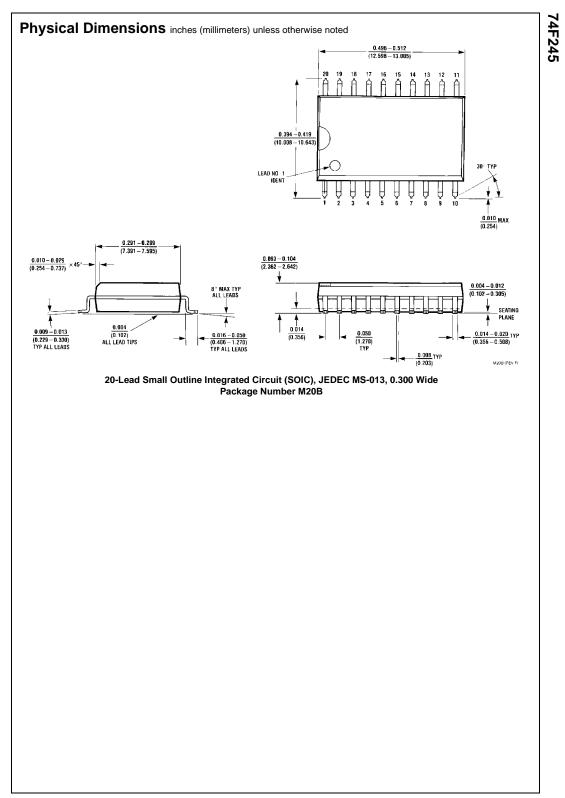
Recommended Operating Conditions

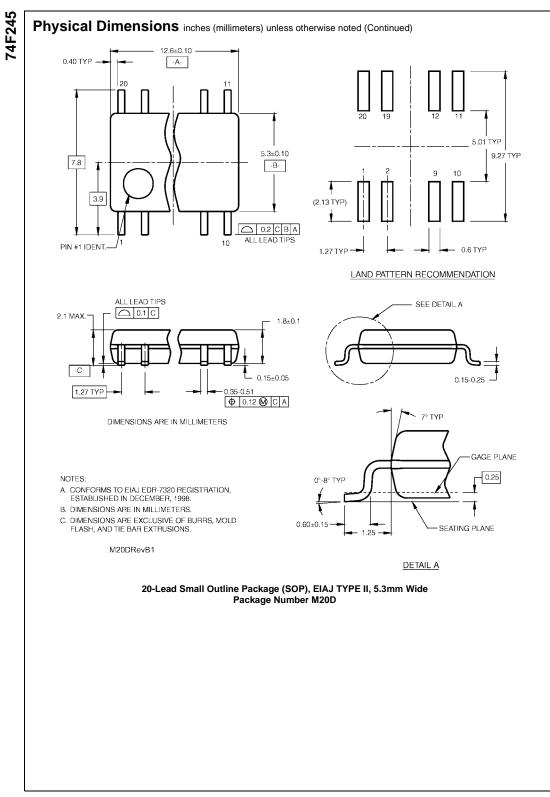
Free Air Ambient Temperature Supply Voltage 74F245

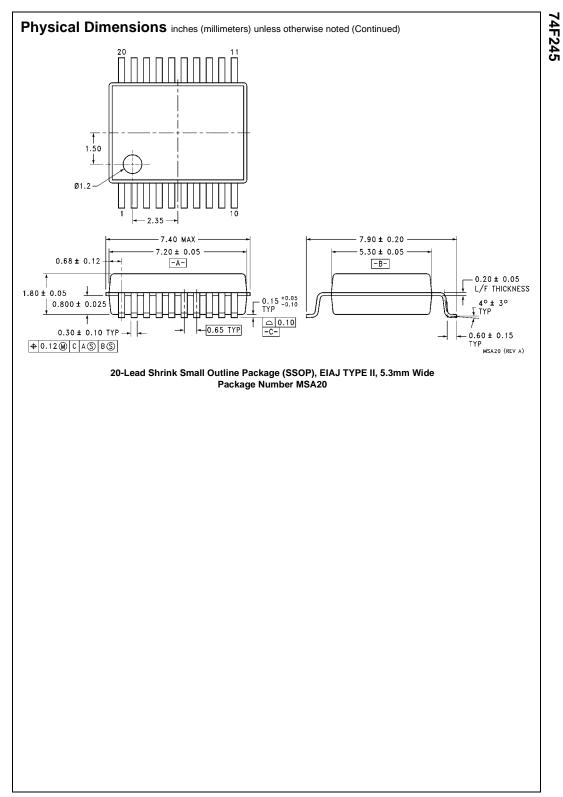
0°C to +70°C +4.5V to +5.5V

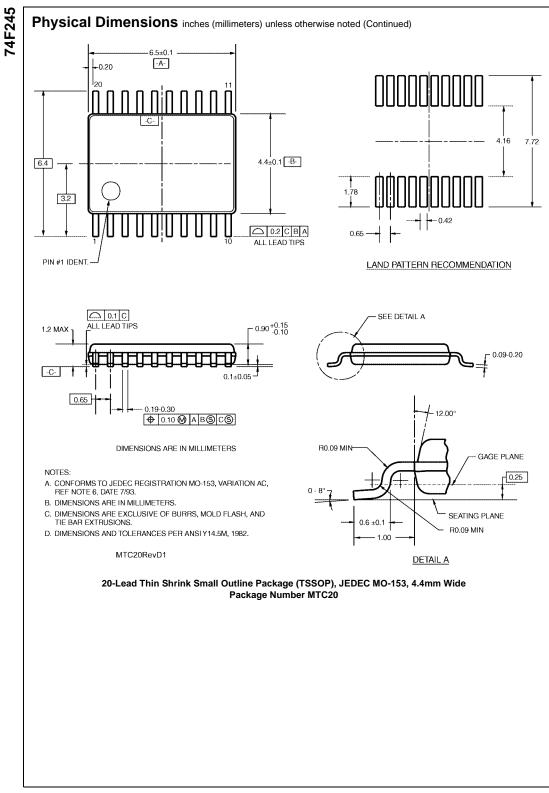
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

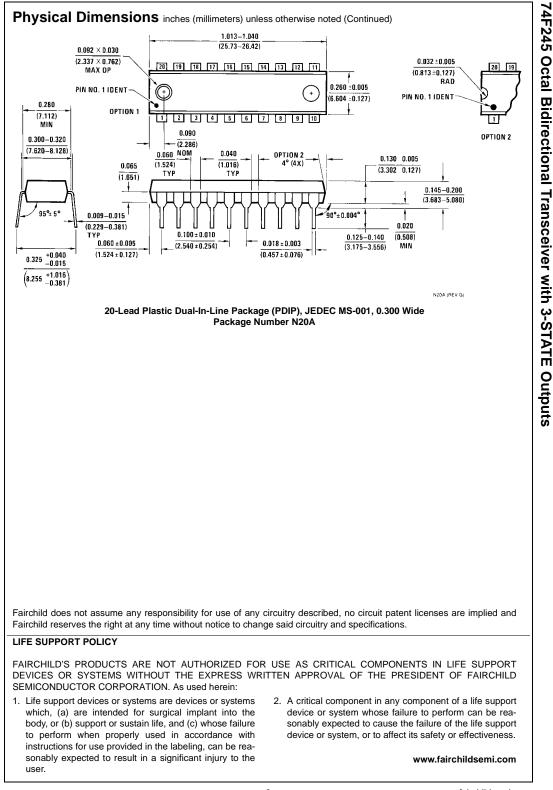
Note 2: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics


Symbol	Parameter		Min	Тур	Max	Units	Vcc	Conditions
VIH	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
VIL	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage 1	0% V _{CC}	2.4					$I_{OH} = -3 \text{ mA} (A_n)$
	1	0% V _{CC}	2.0			V	Min	$I_{OH} = -15 \text{ mA} (B_n)$
		5% V _{CC}	2.7					$I_{OH} = -3 \text{ mA} (A_n)$
V _{OL}	Output LOW Voltage 1	0% V _{CC}			0.5	V	Min	$I_{OL} = 24 \text{ mA} (A_n)$
	1	0% V _{CC}			0.55	v	IVIII	$I_{OL} = 64 \text{ mA} (B_n)$
I _{IH}	Input HIGH Current				5.0	μΑ	Max	V _{IN} = 2.7V
I _{BVI}	Input HIGH Current Breakdown T	est			7.0	μA	Max	$V_{IN} = 7.0V (\overline{OE}, T/\overline{R})$
I _{BVIT}	Input HIGH Current Breakdown (I/O)			0.5	mA	Max	$V_{IN} = 5.5 V (A_n, B_n)$
I _{CEX}	Output HIGH Leakage Current				50	μΑ	Max	$V_{OUT} = V_{CC} (A_n, B_n)$
V _{ID}	Input Leakage		4.75			v	0.0	I _{ID} = 1.9 μA
	Test	4.75			All Other Pins Grounded			
I _{OD}	Output Leakage				3.75	μA	0.0	$V_{IOD} = 150 \text{ mV}$
	Circuit Current				3.75	μΑ	0.0	All Other Pins Grounded
IIL	Input LOW Current				-1.2	mA	Max	$V_{IN} = 0.5V (T/R, \overline{OE})$
I _{IH} + I _{OZH}	Output Leakage Current				70	μΑ	Max	$V_{OUT} = 2.7V (A_n, B_n)$
I _{IL} + I _{OZL}	Output Leakage Current				-650	μΑ	Max	$V_{OUT} = 0.5V (A_n, B_n)$
I _{OS}	Output Short-Circuit Current		-60		-150	mA M	Max	$V_{OUT} = 0V (A_n)$
			-100		-225		IVIAX	$V_{OUT} = 0V (B_n)$
I _{ZZ}	Bus Drainage Test				500	μΑ	0.0V	$V_{OUT} = 5.25V(A_n, B_n)$
I _{CCH}	Power Supply Current			70	90	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current			95	120	mA	Max	$V_0 = LOW$
I _{CCZ}	Power Supply Current			85	110	mA	Max	V _O = HIGH Z


AC Electrical Characteristics


Symbol	Parameter		$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$			C to +125°C 50 pF	$T_A = 0$ °C to +70°C C _L = 50 pF		Units
		Min	Тур	Max	Min	Max	Min	Max	
t _{PLH}	Propagation Delay	2.5	4.2	6.0	2.0	7.5	2.0	7.0	ns
t _{PHL}	A _n to B _n or B _n to A _n	2.5	4.2	6.0	2.0	7.5	2.0	7.0	
t _{PZH}	Output Enable Time	3.0	5.3	7.0	2.5	9.0	2.5	8.0	
t _{PZL}		3.5	6.0	8.0	3.0	10.0	3.0	9.0	
t _{PHZ}	Output Disable Time	2.0	5.0	6.5	2.0	9.0	2.0	7.5	ns
t _{PLZ}		2.0	5.0	6.5	2.0	10.0	2.0	7.5	



www.fairchildsemi.com

www.fairchildsemi.com

www.fairchildsemi.com